Nature inspired genetic algorithms for hard packing problems
نویسندگان
چکیده
This paper presents two novel genetic algorithms (GAs) for hard industrially relevant packing problems. The design of both algorithms is inspired by aspects of molecular genetics, in particular, the modular exon-intron structure of eukaryotic genes. Two representative packing problems are used to test the utility of the proposed approach: the bin packing problem (BPP) and the multiple knapsack problem (MKP). The algorithm for the BPP, the exon shuffling GA (ESGA), is a steady-state GA with a sophisticated crossover operator that makes maximum use of the principle of natural selection to evolve feasible solutions with no explicit verification of constraint violations. The second algorithm, the Exonic GA (ExGA), implements an RNA inspired adaptive repair function necessary for the highly constrained MKP. Three different variants of this algorithm are presented and compared, which evolve a partial ordering of items using a segmented encoding that is utilised in the repair of infeasible solutions. All algorithms are tested on a range of benchmark problems, and the results indicate a very high degree of accuracy and reliability compared to other approaches in the literature.
منابع مشابه
Nature-Inspired Algorithms: State-of-Art, Problems and Prospects
Nature-inspired algorithms have gained immense popularity in recent years to tackle hard real world (NP hard and NP complete) problems and solve complex optimization functions whose actual solution doesn't exist. The paper presents a comprehensive review of 12 nature inspired algorithms. This study provides the researchers with a single platform to analyze the conventional and contemporary...
متن کاملبهینه سازی قابهای فولادی با استفاده از الگوریتم وراثتی اصلاح شده هوشمند
One of the major purposes of optimization in civil engineering is to perform a suitable design for the structure. This goal has to fulfill technical criteria and contain the minimum economical costs. Building frames are of the most customary civil engineering structures. Therefore, optimization of these types of structures could be of a great concern from the economical viewpoints. One of the c...
متن کاملA FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS
Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملSolving TSP Using Various Meta-Heuristic Algorithms
Real world problems like Travelling Salesman Problem (TSP) belong to NP-hard optimization problems which are difficult to solve using classical mathematical methods. Therefore, many alternate solutions have been developed to find the optimal solution in shortest possible time. Nature-inspired algorithms are one of the proposed solutions which are successful in finding the solutions that are ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 179 شماره
صفحات -
تاریخ انتشار 2010